J98Q.1—Parity Violation

Problem

A spin $\frac{1}{2}$ particle of mass m moves in a spherical harmonic oscillator potential and is also subject to a parity violating perturbation. The Hamiltonian is $H=H_{0}+H_{1}$, with

$$
H_{0}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} r^{2} \quad \text { and } \quad H_{1}=\lambda \vec{\sigma} \cdot \vec{r},
$$

where σ_{x}, σ_{y}, and σ_{z} are the Pauli spin matrices.
As a measure of the parity violation, compute the expectation value $\left\langle z \sigma_{z}\right\rangle$ for the ground state, to first order in λ.

