J98M.3-Ice Skate

Problem

As a simplified model for the motion of a skate, assume that the blade experiences no friction when it moves along itself and/or turns around its center. The blade cannot move translationally normal to itself.

Now consider a skate moving on an icy inclined plane which makes a 30 degree angle with the horizontal. In view of the assumption above, you may think of the blade as a thin uniform rod of mass M moving on the plane under the influence of gravity subject to the constraint that it cannot move translationally normal to itself. Introduce Cartesian coordinates x and y on the plane, with x pointing down the incline. The blade is characterized by its center of mass position (x, y) , and the angle ϕ it makes with the x-axis.

a) Write down the equations of motion including the reaction force normal to the blade.
b) Write down the constraint on the motion in terms of x, y, ϕ, and their time derivatives.
c) At time $t=0, x=y=\phi=\dot{x}=\dot{y}=0$ and $\dot{\phi}=\omega$. Find the subsequent trajectory. Hint: The reaction force normal to the blade is proportional to $\sin (\omega t)$.

