Part I—Mechanics J98M.3—Ice Skate

J98M.3—Ice Skate

Problem

As a simplified model for the motion of a skate, assume that the blade experiences no friction when it moves along itself and/or turns around its center. The blade cannot move translationally normal to itself.

Now consider a skate moving on an icy inclined plane which makes a 30 degree angle with the horizontal. In view of the assumption above, you may think of the blade as a thin uniform rod of mass M moving on the plane under the influence of gravity subject to the constraint that it cannot move translationally normal to itself. Introduce Cartesian coordinates x and y on the plane, with x pointing down the incline. The blade is characterized by its center of mass position (x, y), and the angle ϕ it makes with the x-axis.

- a) Write down the equations of motion including the reaction force normal to the blade.
- b) Write down the constraint on the motion in terms of x, y, ϕ , and their time derivatives.
- c) At time $t = 0, x = y = \phi = \dot{x} = \dot{y} = 0$ and $\dot{\phi} = \omega$. Find the subsequent trajectory. Hint: The reaction force normal to the blade is proportional to $\sin(\omega t)$.