J98T.3—Spins in a Magnetic Field

Problem

A sample, comprised of N independent spins (s = 1/2), sits in an external magnetic field **H**. Its Hamiltonian is given by

$$H = -g\mu_B \sum_n \boldsymbol{s}_n \cdot \boldsymbol{H},$$

where g = 2 and μ_B is the Bohr magneton.

- a) Write down the partition function Z.
- b) Calculate the sample's entropy S(H,T), and make a rough sketch of S versus the temperature T for a fixed field H_1 . Show that S is a function of only one quantity x instead of two (T and H). How is x related to T and H? What is the T dependence of S in the low temperature limit?
- c) The sample is initially connected to a heat bath at temperature T_0 , with the field at H_1 . The external field is increased slowly from H_1 to H_2 in an isothermal process. Calculate the heat Q exchanged with the bath. Which way does the heat flow? (Sketch the curve for S vs. T for a larger field.)
- d) When the field reaches H_2 , the link to the heat bath is removed. The field is then slowly reduced back to H_1 in an adiabatic process. Calculate the final temperature T_f of the sample (Hint: The actual form of S in part b) is not needed here. You may use a simple scaling argument.)