M98E.1-Field of a Wire

Problem

A neutral wire along the z-axis carries current I that varies with time t according to

$$
I(t)=\left\{\begin{array}{ll}
0 & t \leq 0, \\
\alpha t & t>0,
\end{array} \quad \alpha\right. \text { is a constant. }
$$

Deduce the time-dependence of the electric and magnetic fields, \mathbf{E} and \mathbf{B}, observed at a point $(r, \theta=0, z=0)$ in a cylindrical coordinate system about the wire. Use your expressions to discuss the fields in the two limiting cases that $c t \gg r$ and $c t=r+\epsilon$, where c is the speed of light and $\epsilon \ll r$.

Fact:

$$
\int \frac{d x}{\sqrt{a^{2}+x^{2}}}=\ln \left(x+\sqrt{a^{2}+x^{2}}\right)
$$

