M98Q.2-Scattering From a Spherical Potential

Problem

a) Calculate the differential cross-section, $d \sigma / d \Omega$, for a particle with mass m in the spherical potential $V(r)=V_{0} e^{-(r / a)^{2}}$, in first-order Born approximation. You may need

$$
\int_{0}^{\infty} \sin (r) e^{-(r / b)^{2}} r d r=\frac{\sqrt{\pi}}{4} b^{3} e^{-b^{2} / 4}
$$

b) Calculate the total cross-section. It may be helpful to use the representation $\left|\vec{k}-\overrightarrow{k^{\prime}}\right|=$ $2|\vec{k}| \sin (\theta / 2)$, where θ is the angle between \vec{k} and $\overrightarrow{k^{\prime}}$.
c) For which values of V_{0}, a and/or k is the first-order Born approximation applicable?

