M98Q.2—Scattering From a Spherical Potential

Problem

a) Calculate the differential cross-section, $d\sigma/d\Omega$, for a particle with mass m in the spherical potential $V(r) = V_0 e^{-(r/a)^2}$, in first-order Born approximation. You may need

$$\int_0^\infty \sin(r)e^{-(r/b)^2}rdr = \frac{\sqrt{\pi}}{4}b^3e^{-b^2/4}.$$

- b) Calculate the total cross-section. It may be helpful to use the representation $|\vec{k} \vec{k'}| = 2|\vec{k}|\sin(\theta/2)$, where θ is the angle between \vec{k} and $\vec{k'}$.
- c) For which values of V_0 , a and/or k is the first-order Born approximation applicable?