
J99T.2—Maxwell Construction

Problem

Consider a system whose equilibrium states are described by the temperature, T and density ρ .

- a) What is the relation between the free energy per unit volume, $f(T, \rho)$, and the pressure, $P(T, \rho)$?
- b) For thermodynamic stability, the pressure has the property that $P(T, \rho)$ is a monotonically increasing function of ρ for fixed T. What property of $f(T, \rho)$ is equivalent to this?

From a model equation of state, and assuming the system is homogeneous, we find the $P(1/\rho)$ curve at constant temperature $T < T_c$, shown in the Figure.

- c) Sketch $f(\rho)$ at temperature $T < T_c$. Assuming the system in equilibrium will phase separate if this reduces the free energy, construct the physical free energy curve, $\bar{f}(\rho)$.
- d) How does your construction of the new free energy translate to a new isotherm in the $(P, 1/\rho)$ plane? Make sure you show analytically that the construction for f and the construction for P are equivalent.