M99Q.3-Beam Me Up, Charlie

Problem

This question relates to a method which was proposed for the "teleportation" of a quantum state by means of classical bits of information (plus a pair of photons in an entangled EPR state).

Alice has a photon - actually a beam of photons but let us focus on one, labeled (1), whose state $|\Psi\rangle$ is an unknown superposition of the two polarization states: vertical polarization, denoted here
 his lab a photon in exactly this state $|\Psi\rangle$.

To facilitate the "teleportation" of the state to Bob, Charlie sends to each of them one of the photons which are emitted from his EPR (Einstein-Podolsky-Rosen) machine, in the entangled state (of photons labeled (2) and (3)):

$$
\left|\Phi^{(a)}\right\rangle_{2,3}=\frac{1}{\sqrt{2}}\left[|+,-\rangle_{2,3}-|-,+\rangle_{2,3}\right]
$$

(where $|+,-\rangle_{2,3}=|+\rangle_{2}|-\rangle_{3}$, etc...). He sends photon (2) to Alice and photon (3) to Bob.
Alice has a device which can measure the state of the pair of photons (1) and (2), distinguishing between the four entangled states:

$$
\begin{aligned}
\left|\Phi^{(a)}\right\rangle_{1,2}=\frac{1}{\sqrt{2}}\left[|+,-\rangle_{1,2}-|-,+\rangle_{1,2}\right], & \left|\Phi^{(b)}\right\rangle_{1,2}=\frac{1}{\sqrt{2}}\left[|+,-\rangle_{1,2}+|-,+\rangle_{1,2}\right] \\
\left|\Phi^{(c)}\right\rangle_{1,2}=\frac{1}{\sqrt{2}}\left[|+,+\rangle_{1,2}-|-,-\rangle_{1,2}\right], & \left|\Phi^{(d)}\right\rangle_{1,2}=\frac{1}{\sqrt{2}}\left[|+,+\rangle_{1,2}+|-,-\rangle_{1,2}\right]
\end{aligned}
$$

a) What is the state of the photon (3), which Bob has, if Alice finds her pair of photons to be in the state $\left|\Phi^{(a)}\right\rangle_{1,2}$, and what is it if Alice finds her pair of photons to be in the state $\left|\Phi^{(b)}\right\rangle_{1,2}$? (It helps to start by writing down the state of all three photons, $|\ldots\rangle_{1,2,3}$.)
b) Show that by doing the measurement and communicating its outcome (a, b, c or d) to Bob, Alice will provide Bob with enough information to transfrom the state of the photon (3) into the exact state $|\Psi\rangle$. Determine, for each possible outcome of Alice's measurement, which (unitary) operation does Bob need to apply to his photon to make it end up in the polarization state $|\Psi\rangle$? (Assume that he knows how to implement experimentally each of these unitary transformations.)
(Based on: C.H. Bennett and S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).)

