J01Q.1-Excitation of a Harmonic Oscillator

Problem

A particle with mass M_{1} is moving along the x axis subject to the one-dimensional harmonicoscillator potential $V\left(x_{1}\right)=\frac{1}{2} M_{1} \omega^{2} x_{1}^{2}$. A second particle with mass M_{2} is also moving along the x axis. It is free (and in particular does not feel the potential $\left.V\left(x_{1}\right)\right)$ but has an interaction $\lambda \delta\left(x_{1}-x_{2}\right)$ with the first particle, where $\delta(x)$ is the Dirac delta function. The total potential is

$$
V\left(x_{1}, x_{2}\right)=\frac{1}{2} M_{1} \omega^{2} x_{1}^{2}+\lambda \delta\left(x_{1}-x_{2}\right) .
$$

Suppose particle 1 is in the ground state of the harmonic oscillator and particle 2 is incoming from $x_{2}=-\infty$ with momentum $p>0$. To first order in $|\lambda|^{2}$, calculate the probability that as a result of the scattering, particle 1 will be in the first excited state.

