Part II—E & M

J01E.2—Betatron

J01E.2—Betatron

Problem

A betatron is a device in which ultrarelativistic electrons are held in a circle of fixed radius R (taken to be centered on the origin in the x-y plane) by a magnetic field $B_z(r,t)$ while their energy is increased via a changing magnetic flux $d\Phi/dt = \pi R^2 dB_{z,ave}/dt$ through the circle. Motion of the electrons perpendicular to the circle is prevented by means that need not be considered here.

Deduce the relation between the magnetic field B_z at radius R and the magnetic field $B_{z,ave}$ averaged over the area of the circle. Also deduce the maximum energy \mathcal{E} to which an electron could be accelerated by a betatron in terms of B_z , $dB_{z,ave}/dt$ and R.

Hints: The electrons in this problem are ultrarelativistic, so it is useful to introduce the factor $\gamma = \mathcal{E}/mc^2 \gg 1$, where c is the speed of light. Recall that Newton's second law has the same form for nonrelativistic and relativistic electrons except that in the latter case the effective mass is γm . Recall also that for circular motion the rest frame acceleration is γ^2 times that in the lab frame.