J01E.3-Electromagnetic Wave on a Slab of Dielectric

Problem

A plane electromagnetic pulse $E(z, t)=f(z / c-t)$ is incident from vacuum at $z<0$ on a dielectric medium that extends from $z=0$ to $z=a$. The region $z>a$ is also vacuum. The pulse has Fourier components only at frequencies near its central angular frequency ω_{0}. The index of refraction $n(\omega)$ of the medium is near unity, so reflections at the boundaries can be ignored, and the approximation

$$
\omega n(\omega) \approx \omega_{0}+\left.\frac{d(\omega n(\omega))}{d \omega}\right|_{\omega_{0}}\left(\omega-\omega_{0}\right)
$$

holds over the relevant frequency bandwidth of the waveform.
Compute the waveform $E(z, t)$ in the dielectric region $0<z<a$, and in the vacuum region $a<z$.
If ω_{0} is chosen to lie between two spectral lines of the medium, which is pumped by lasers at those frequencies into inverted populations, then the group velocity $v_{g}\left(\omega_{0}\right)$ can be negative, as recently demonstrated by Wang et al., Nature 406, 277 (2000). Comment on any unusual features of the pulse propagation in this case.

Hint: first discuss the propagation of a monochromatic wave; then consider its impli- cations for the Fourier analysis of the pulse.

