J01Q.3-Spin in a Magnetic Field

Problem

Consider a particle with spin $S=1 / 2$ at rest in a constant magnetic field \vec{B} that is directed along the positive x axis. The Hamiltonian is given by

$$
H=g \mu_{B} \vec{B} \cdot \vec{S}
$$

The spin can be measured in an apparatus that determines S_{z} to be up or down. At time $t=0$ the spin is up $\left(S_{z}=\hbar / 2\right)$. Let T be the time at which the probability of finding the spin to be up is zero for the first time, assuming that no other measurements have been done between $t=0$ and $t=T$. Suppose instead that the spin is measured repeatedly at constant time intervals T / N with N an integer.
a) What is the probability that the spin is found to be up at all measurements from $t=0$ up to and including the measurement at $t=T$? Show that this probability approaches one for large N. Estimate its deviation from one.
b) Find the probability for the spin to be up at time $t=T$ while taking into account the possibility that the spin has changed from up to down and back several times at the intermediate measurements between $t=0$ and $t=T$. Try to simplify the resulting combinatorics.

