M01M.2-Particle in an Anharmonic Potential

Problem

A particle of mass m moves in a one-dimensional potential $V(x)=-a x^{2}+b x^{4}$ with very light damping. The particle is set in motion with a large initial velocity. Suppose now we measure the period of the motion for each full oscillation, and call these periods $T_{1}, T_{2}, T_{3}, T_{4}$, and so on. It is observed that the T_{i} briefly become very large for i near some i_{0}.
a) Explain what makes the periods get large.
b) Obtain a scaling form for T_{i} near $i=i_{0}$, valid in the limit of small damping. (A scaling form would be something like $T \sim\left|i-i_{0}\right|^{\alpha}$ for some α, or $T \sim \log \left|i-i_{0}\right|$, etc). Hint: consider first the motion without the friction, $m \ddot{x}=V^{\prime}(x)$. Recalling that this motion is necessarily periodic, derive an integral formula relating the period of oscillation to the energy and the turning points x_{-}and x_{+}of the motion.
c) Give an approximate sketch of T_{i} as a function of i.

