J02T.1—Joule-Thomson Process

Problem

A thermally isolated vessel containing a non-ideal gas is separated in two parts by a porous barrier. Initially all of the gas is on one side of the barrier and occupies a volume V. The gas is transferred slowly through the barrier by moving two pistons inward and outward, while keeping the pressures P_{1} and P_{2} fixed on both sides of the barrier. This is called a Joule-Thomson process. For an ideal gas the temperatures T_{1} and T_{2} before and after the process are the same. For a non-ideal gas there will be a small difference $\Delta T=T_{2}-T_{1}$. The problem is to determine ΔT for a non-ideal gas described by the van der Waals equation of state

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T
$$

In this problem we assume that the pressure difference is small, so that after the process the volume has increased only by a small amount $\Delta V=V_{2}-V_{1}$.
a) Calculate the free energy $F(V, T)$ for a van der Waals gas with total specific heat C_{V}.
b) Show that the enthalpy $H \equiv U+P V$ is constant for a Joule-Thomson process.

Hint: Argue that

$$
\Delta T=\left(\frac{\partial T}{\partial V}\right)_{H} \Delta V
$$

c) Find the enthalpy H for a van der Waals gas as a function of V and T.
d) Show that ΔT is positive for high temperature and negative at low temperatures. The temperature T_{inv} at which ΔT changes sign is called the inversion temperature. Derive that

$$
T_{\mathrm{inv}}=\frac{2 a}{b R}\left(1-\frac{b}{V}\right)^{2}
$$

