J02Q.3-Interacting Particles on a Line

Problem

Two identical neutral, spin- $\frac{1}{2}$ particles of mass M and magnetic moment μ are restricted to move on a line. The interaction between them is spin dependent and is described by the Hamiltonian

$$
H=\frac{p_{1}^{2}+p_{2}^{2}}{2 m}+\left(2 \hbar^{2}-S_{T}^{2}\right) U_{0}\left(x_{1}-x_{2}\right)
$$

Here $\mathbf{S}_{T}=\mathbf{S}_{1}+\mathbf{S}_{2}$ is the total spin of the system $\left(S_{T}=0\right.$ or 1$)$ and U_{0} is an infinite-well potential:

$$
U_{0}(x)= \begin{cases}-\frac{\pi^{2}}{4 m a^{2}}, & |x|<a, \\ \infty, & a<|x|\end{cases}
$$

a) Find the energy eigenstates of the system (in zero magnetic field) and their corresponding wave-functions. What is the energy E_{0} of the ground state?
b) Assume that initially the system is in the ground state and that $\hbar \omega+E_{0}>0$. To first order in perturbation theory, what is the half lifetime of the bound state in the presence of an electromagnetic plane wave with magnetic field $B_{z}=B_{0} \cos k(x-c t)$.

You may use the nonrelativistic approximation $k a \ll 1$ and expand to lowest order in $k a$.

