J02T.3—Ensemble of Harmonic Oscillators

Problem

Consider an ensemble of $N \gg 1$ independent identical oscillators of natural frequency ω . Suppose there is a total of M quanta (bosons) to distribute among the ensemble. The number of distinct ways to do so may be shown to be

$$W(M) = \frac{(M+N-1)!}{M!(N-1)!}.$$

- a) Write down the internal energy E and the entropy S of the ensemble in terms of M, N and ω .
- b) Now suppose the system comes to equilibrium with a heat reservoir at temperature T. By minimizing an appropriate thermodynamic function, find the average distribution $n(T) = \langle M \rangle / N$.
- c) Derive the heat capacity C_V versus T.
- d) Verify that at equilibrium the derivative $d\langle S\rangle/dE$ gives the inverse temperature.
- e) Derive the equation above. [Hint: Think partitions.]