M02Q.2-Three Particles on a Ring

Problem

Consider a molecule of three particles, each carrying $S=\frac{1}{2}$ connected by springs and constrained to move on a circle of circumference L. (The last bit is to make the geometry easier, the situation without this constraint works out the same way.)

The Hamiltonian for this system is

$$
H=2 J \sum_{i=1}^{3}\left(1-\alpha x_{i, i+1}\right) \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}+\frac{1}{2} k x_{i, i+1}^{2}
$$

where the \boldsymbol{S}_{i} are spin-1/2 operators and the $x_{i, i+1}(>0)$ are the distances along the circle between neighboring particles i and $i+1$. By periodicity, $4 \equiv 1$. Finally, $J>0$.
a) Find the ground states of the spin system in isolation, i.e. when $\alpha=0$. How many ground states are there?
b) Find the ground states of the coupled system when $0<\alpha \ll 1$. Restrict yourself to ground states in which two of the three interparticle distances are identical, e.g. $x_{1,2}=x_{2,3}$.
(You may find the following identity useful in the computations in part b):

$$
\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}=\frac{1}{4}\left(2 P_{i j}-1\right)
$$

where $P_{i j}$ interchanges spins i and j.)

