M02M.3-The Coriolis Effect

Problem

A particle is dropped vertically in the Earth's gravitational field at latitude λ. Assume it feels an air $\operatorname{drag} F=k v^{2}$. Due to the Coriolis effect, it will undergo a horizontal deflection.
a) Initially neglect the Earth's rotation. Find an explicit equation for the vertical velocity.
b) Working at leading order in the Earth's angular velocity ω, and using the result you just derived, find the horizontal velocity as a function of time.
c) What is the velocity at $t \gg \sqrt{\frac{m}{g k}}$?

