J03E.1—Waves in Aluminum

Problem

A plane wave at 90 GHz is normally incident on aluminum, a very good conductor, that fills the space with z > 0 as shown in the figure. Most, but not all, of the field is reflected from the surface. Aluminum has a magnetic permeability equal to that of free space and a conductivity of $\sigma = 3.5 \times 10^{17} \text{ s}^{-1}$ or $3.5 \times 10^7 \Omega^{-1} \text{m}^{-1}$.

a) Assume the wave inside the aluminum has the form

$$\vec{E} = E_0 \exp(ikx - i\omega t)\hat{e}_x.$$

What is the dispersion relation, $k(\omega)$, in the aluminum?

- b) What fraction of the incident power is reflected?
- c) What is the numerical value of the normal emissivity ϵ ? Recall that $\epsilon = (\text{the power emitted})/(\text{the power emitted by a perfect radiator at the same temperature}).$