J03M.1-Scattering from an Attractive Potential

Problem

This problem is about scattering by an attractive potential.
a) Consider a particle with energy E and $z<0$ approaching the $z=0$ plane at an angle θ_{1} to the z-axis. Find the angle θ_{2} that it makes to the z axis after passing through the $z=0$ plane if $V=0$ for $z<0$ and $V=-V_{0}$ (constant) for $z>0$.
b) Apply your result to a uniform beam of particles scattered by the attractive potential

$$
V(r)=-V_{0} \quad r<a, \quad V(r)=0 \quad r>a
$$

Determine the differential cross section. (Recall that the definition of the differential cross section is $\frac{d \sigma}{d \Omega}=\frac{b}{\sin \theta} \frac{d b}{d \theta}$, where b is the impact parameter and θ the scattering angle.)

