J03Q.1-Central Potential Scattering

Problem

Consider the scattering of quantum-mechanical particles by a spherical square-well in three dimensions given by a radial potential

$$
V(r)= \begin{cases}V_{0} & \text { for } \quad r<a \\ 0 & \text { otherwise }\end{cases}
$$

having a constant depth V_{0} within a radius $a>0$ of the origin. Assume that the particles have an extremely low low energy $E>0$, that is, $a \sqrt{2 m E} \ll \hbar$. In this case only partial waves of angular momentum $L=0$ suffer appreciable scattering.
a) Calculate the total cross section for the case of an attractive potential with depth $V_{0}<0$.
b) Starting from the answer you derived, consider now the case of scattering from a hard sphere, by taking the potential to be repulsive $\left(V_{0}>0\right)$ in the limit $V_{0} / E \rightarrow \infty$. Show that the answer is $4 \pi a^{2}$ (four times bigger than the classical result).

