M03Q.1-Flipping Spins With a Magnetic Field

Problem

A particle with spin $1 / 2$ is at rest in a static magnetic field of strength $B_{z}=B_{0}$ oriented along the z-axis. The magnetic moment interaction splits the $S_{z}=+1 / 2$ from the $S_{z}=-1 / 2$ state. One can manipulate the spin state of the particle by subjecting it to a time-dependent field $\vec{B}_{1}=$ $B_{1}(\cos (\phi(t)), \sin (\phi(t)), 0)$ that rotates in the $x-y$ plane at a variable frequency $\dot{\phi}(t)$. We will discuss different ways of choosing $\phi(t)$ to achieve the goal transforming an initial $S_{z}=-1 / 2$ state into an $S_{z}=+1 / 2$ state.

The two-component spin wave function ψ of this system evolves under a time-dependent Hamiltonian which can be written as

$$
H=\mu B_{0} \sigma_{z}+\mu B_{1}\left(\sigma_{x} \cos (\phi(t))+\sigma_{y} \sin (\phi(t))\right)
$$

where μ is the magnetic moment and $\sigma_{x, y, z}$ are the Pauli matrices (with $\sigma_{x}^{2}=1$ etc.). For general $\phi(t)$ this is hard to solve, but various special cases and approximations are helpful as we now show.
a) First show that the 'interaction picture' wave function

$$
\hat{\psi}=\exp \left(-i \phi(t) \frac{\sigma_{z}}{2}\right) \psi
$$

evolves according to a simpler Hamiltonian $H_{\text {rot }}(t)$ which becomes time-independent when ϕ is linear in t.
b) Consider the case that $\dot{\phi}=\omega_{1}$ for a finite time interval $-T<t<T$ and is zero otherwise (this is not too hard to realize experimentally). $H_{\text {rot }}$ is now time-independent and you can solve Schrödinger equation. Find ω_{1} and T such that a spin-down state is perfectly converted into a spin-up state by the $-T \rightarrow T$ time evolution (this is sometimes called a ' Π pulse'). Note that for this method to work for a collection of spins, they must all be subject to the same field $B_{0} \hat{z}$.
c) Now consider the case of a 'chirped' frequency such that $\dot{\phi}(t)=-\alpha t$ for $-T<t<T . H_{\text {rot }}(t)$ now varies with time, but if its matrix elements vary slowly (i.e. if α is small), and there is no level crossing, the adiabatic theorem should apply. This means that the system remains in the 'same' eigenstate of the instantaneus Hamiltonian for all time. Make a rough plot of the eigenenergies of the instantaneous Hamiltonian $H_{r o t}$ as a function of time for this case. Show that the lowest energy eigenstate evolves from spin down at $t=-T$ to spin up at $t=+T$ if we take $\alpha T \gg \mu B_{0}, \mu B_{1}$. Note that this method of spin flipping is insensitive to the value of B_{0} an could work for a collection of spins in an inhomogeneous environment.

