M03T.1—Thermodynamics of an Elastic String

Problem

An elastic string is found to have the following properties:

- To stretch it to a total length x requires a force $f = \mu x \alpha T + \beta T x$. Assume that α, β, μ are constants.
- Its heat capacity at constant length x is proportional to temperature: $C_x = A(x)T$.

We can use thermodynamic identities to derive from these facts a variety of other thermal properties. More specifically:

- a) Calculate $\frac{\partial S}{\partial x}|_T$.
- b) Show that A has to be independent of x.
- c) Calculate $\frac{\partial S}{\partial T}|_x$ and give the general expression for entropy S(x,T) assuming S(0,0)=B, where B is a constant.
- d) Compute the heat capacity at zero tension $C_F = T \frac{\partial S}{\partial T} \Big|_{f=0}$.