M03Q.3-Addition of Angular Momentum

Problem

The total angular momentum of a valence electron in an atom of orbital angular momentum l can be either $J=l+1 / 2$ or $J=l-1 / 2$. The two total angular momentum states are typically split by spin-orbit interactions, leaving $2 J+1$ degenerate states of the same J, but different J_{z}. Upon applying a uniform magnetic field $B \hat{z}$, these magnetic substates are split by the interaction between the magnetic moment and the applied magnetic field. The perturbation Hamiltonian is

$$
H_{i n t}=-\frac{e \hbar}{2 m_{e} c} B\left(L_{z}+2 S_{z}\right)=-\frac{e \hbar}{2 m_{e} c} B\left(J_{z}+S_{z}\right)
$$

where the relative factor of two between L_{z} and S_{z} is due to the famous fact that the g-factor of the electron is two. The Zeeman splitting of the degenerate multiplet of total angular momentum J is thus

$$
\delta E_{J, J_{z}}=-\frac{e \hbar B}{2 m_{e} c}\left\langle J, J_{z}\right|\left(J_{z}+S_{z}\right)\left|J, J_{z}\right\rangle=-\frac{e \hbar B}{2 m_{e} c}\left(J_{z}+\left\langle J, J_{z}\right| S_{z}\left|J, J_{z}\right\rangle\right) .
$$

To evaluate this explicitly we need to solve the slightly nontrivial problem of evaluating the matrix elements of S_{z}.
a) Consider the special case $l=1$. Construct the $J=3 / 2,1 / 2$ states by angular momentum addition and evaluate $\left\langle J, J_{z}\right| S_{z}\left|J, J_{z}\right\rangle$ for all the states. Show that the energy splittings satisfy $\delta E_{J, J_{z}}=g_{J} J_{z}$ and state the two values of g_{J} that you have just computed.
b) Now consider the case of general l. It is possible, but tedious, to directly verify that $\delta E=g_{J}^{l} J_{z}$ for the two possible J multiplets. Assuming that this is so (i.e. that it suffices to compute g_{J}^{l} in any magnetic sublevel J_{z}), find the relevant g_{J}^{l} factors for the two multiplets $J=l \pm 1 / 2$.
c) The above calculations are particular examples of a general result most easily proved using the Wigner-Eckart theorem. For a general vector operator \vec{A} (one whose commutation relations with \vec{J} are of the form $\left[J_{i}, A_{j}\right]=i \epsilon_{i j k} A_{k}$) the theorem says that

$$
\left\langle J, M^{\prime}\right| \vec{A}|J, M\rangle=\frac{\langle J| \vec{J} \cdot \vec{A}|J\rangle}{J(J+1)}\left\langle J, M^{\prime}\right| \vec{J}|J, M\rangle .
$$

Use this theorem to rederive the g_{J}^{l} factor for $J=l+1 / 2$ multiplet which you computed above.

