M04Q.2-Positronium in a Magnetic Field

Problem

Consider ths spin degrees of freedom of a two-particle system, one with spin S and the other with spin $1 / 2$. The Hamiltonian is

$$
H=a \boldsymbol{S}_{\mathbf{1}} \cdot \boldsymbol{S}_{\mathbf{2}}
$$

with a a constant. Here $\boldsymbol{S}_{\mathbf{1}}$ and $\boldsymbol{S}_{\mathbf{2}}$ stand for the vector spin operators of particle 1 and 2 , respectively.
a) Calculate the eigenvalues of H. What are their multiplicities?
b) Consider now the special case, corresponding to the spin degrees of freedom of positronium, where both spins are $S=1 / 2$. What are the eigenvalues and corresponding eigenstates of H ?
c) When the positronium is placed in a magnetic field, oriented in the z-direction, the Hamiltonian becomes

$$
H_{B}=a \boldsymbol{S}_{\mathbf{1}} \cdot \boldsymbol{S}_{\mathbf{2}}+b\left(S_{1}^{z}-S_{2}^{z}\right),
$$

where b is a constant. Describe the multiplicities of the resulting spectrum, and calculate the eigenvalues and eigenvectors of H_{B}.

