M04T.2—Surface Waves and Heat Capacity (M05T.3)

Problem

Consider waves on a liquid surface where the restoring force is produced by the surface tension. Assume there is a single polarization and the dispersion relation is

$$\omega^2 = \frac{\gamma}{\rho} k^3,$$

where γ is the surface tension of the liquid, ρ is its density, ω is the frequency of the waves and k is their wavenumber. Our goal is to find the contribution of these waves to the heat capacity of the liquid.

- a) If the surface is in equilibrium at temperature T, what is the average energy of a wave with frequency ω ? (Ignore the $\hbar\omega/2$ zero point energy.)
- b) At low temperatures what are the energy per unit area and heat capacity per unit area of these surface waves? You may leave dimensionless integrals in your answer.
- c) What can you say about the high temperature heat capacity per unit area?