M04Q.3-Scattering from a Cube Potential

Problem

A beam of particles of mass m and energy E propagates along the z axis of a coordinate system, and scatters from the cubic potential

$$
V= \begin{cases}v & \text { if }|x| \leq L,|y| \leq L,|z| \leq L \\ 0 & \text { otherwise }\end{cases}
$$

where v is a small constant energy
a) Use the Born approximation to find an explicit formula for the scattering cross section $\sigma=$ $\sigma(\theta, \phi)$ as a function of the angles θ and ϕ.
Recall that spherical coordinates of a point in space (r, θ, ϕ) are related to cartesian coordinates (x, y, z) by $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$ and $z=r \cos \theta$. The Born approximation is easy to evaluate in one coordinate system and hard in the other.
b) Under what circumstances is this approximation for the scattering cross section valid? Explain.

