M04Q.3—Scattering from a Cube Potential

Problem

A beam of particles of mass m and energy E propagates along the z axis of a coordinate system, and scatters from the cubic potential

$$V = \begin{cases} v & \text{if } |x| \le L, |y| \le L, |z| \le L, \\ 0 & \text{otherwise} \end{cases}$$

where v is a small constant energy

- a) Use the Born approximation to find an explicit formula for the scattering cross section $\sigma = \sigma(\theta, \phi)$ as a function of the angles θ and ϕ . Recall that spherical coordinates of a point in space (r, θ, ϕ) are related to cartesian coordinates (x, y, z) by $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$. The Born approximation is easy to evaluate in one coordinate system and hard in the other.
- b) Under what circumstances is this approximation for the scattering cross section valid? Explain.