## J06M. 1 - Gyroscope

## Problem

A gyroscope, illustrated in the figures below, is free to pivot about point $O$ under the effect of gravity. Its total mass is $M$ and its center of mass is located at point $P$ at a distance $R$ from $O$. In the reference frame $\left(O ; \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right)$ of the gyroscope (see figures), its moment of inertia tensor about point $O$ is $\hat{I}=\left(\begin{array}{ccc}I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I_{3}\end{array}\right)$. If $(O ; \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$ is the laboratory frame and $\boldsymbol{n}$ that axis at the intersection between the plane $\boldsymbol{i}_{2} \boldsymbol{i}_{3}$ and the plane $\boldsymbol{i} \boldsymbol{k}$, define $\alpha$ to be the rotation angle of the gyroscope around $\boldsymbol{i}_{3}, \theta$ (the nutation angle) to be the angle between $\boldsymbol{i}_{3}$ and $\boldsymbol{n}$ and $\phi$ (the precession angle) as the angle between $\boldsymbol{k}$ and $\boldsymbol{n}$.

a) Write the Lagrangian of the system and its energy in terms of the angles $\alpha, \theta, \phi$ and of their time derivatives. [Hint: In order to find the expression for the kinetic energy $\frac{1}{2} \vec{\omega} \cdot \hat{I} \vec{\omega}$, first write $\vec{\omega}$ in the reference frame $\left.\left(O ; \boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}\right).\right]$
b) Write the conservation laws for this system: energy and two projections of angular momentum.
c) From the conservation laws deduce a closed equation for $\theta$ in the form $F(\dot{\theta}, \theta)=0$.
d) At time $t=0$ the gyroscope is place horizontally $(\theta=0)$ with zero nutation angular velocity $(\dot{\phi}=\dot{\theta}=0)$ and spin angular velocity $\dot{\alpha}=L_{0} / I_{3}$. Show that for $\theta \ll 1$ the previous equation and these initial conditions admit an approximate solution $\theta=\theta_{0}\left(1-\cos \omega_{n} t\right)$. Compute the frequency $\omega_{n}$, the amplitude $\theta_{0}$, and the average precession velocity $\langle\dot{\phi}\rangle$. Find the condition on the initial data (i.e. on $L_{0}$ ) for which $\theta \ll 1$ remains a good approximation at all times.

