J06Q. 1 - Position and Momentum

Problem

a) For a particle moving in three dimensions with Hamiltonian

$$
H=\frac{p^{2}}{2 m}+V(\vec{r})
$$

in an arbitrary quantum state, what are the time derivatives, $d\langle\vec{r}\rangle / d t$ and $d\langle\vec{p}\rangle / d t$, of the expectation values of the position and momentum?
b) For times $t<0$, a one-dimensional simple harmonic oscillator with mass m and frequency ω is in its ground state, at energy $\hbar \omega / 2$, with $\langle x\rangle=0$. At time $t=0$ a uniform electric field E is instantaneously turned on and remains on for $t>0$; it couples to the particle's charge q. What is the full time- and x-dependence of the particle's wave function $\psi(x, t)$? If its energy is measured at time t, what are the possible results and their probabilities?

