J06T. 1 - Bose Einstein Condensation

Problem

A spin-zero particle of mass m moves nonrelativistically in the 3-D harmonic potential given by

$$
V(x, y, z)=\frac{m \omega^{2}}{2}\left(x^{2}+y^{2}+z^{2}\right)
$$

a) Obtain an expression for $D(\epsilon)$, the density of states for this particle, that is valid at energies much larger than $\hbar \omega$, where the energy ϵ can be approximated as a continuous variable.
b) Suppose there are now N (where N is large) noninteracting spin-zero particles in this harmonic oscillator potential. The particles are in equilibrium at temperature T, with $k_{B} T \ll \hbar \omega$. What is the chemical potential of the system in this low T regime (including the leading dependence on N for large N)?
c) In the thermodynamic limit of large N, this system has a Bose-Einstein condensation (BEC) such that the number of particles in the ground state is large even for temperatures well above $\hbar \omega$. The number of particles in the ground state is $N_{0}(T)=N\left(1-\left(T / T_{E}\right)^{\alpha}\right)$, where T_{E} is the Einstein condensation temperature. Determine the exponent α and an expression for T_{E}. You may encounter a dimensionless integral whose value is not readily evaluated; you may give your answers in terms of this integral. For T_{E} to remain finite in the thermodynamic limit, the trap must be "softened", so that ω decreases in the appropriate way as N grows in order to keep T_{E} finite in the limit.

