## M06Q. 3 - Two Interacting Particles

## Problem

Consider two particles of mass $m$ moving in one dimension. Particle 1 moves freely, while particle 2 experiences a harmonic potential $V\left(x_{2}\right)=\frac{1}{2} m \omega^{2} x_{2}^{2}$. The two particles interact via a delta function potential

$$
V_{i n t}\left(x_{12}\right)=\lambda \delta\left(x_{12}\right)
$$

with $x_{12} \equiv x_{1}-x_{2}$. Particle 2 starts in the ground state $\left|\psi_{0}\right\rangle$, and particle 1 comes in from the left in a momentum eigenstate $\left|p_{i}\right\rangle$. Compute the transition probability $\mathcal{P}_{01}$ that particle 2 ends up in the first excited state $\left|\psi_{1}\right\rangle$, to leading order for small $\lambda$.

