J07M.1 - Ball on a Turntable

Problem

A spherically symmetric ball of mass m, moment of inertia I about any axis through its center, and radius a, rolls without slipping and without dissipation on a horizontal turntable (so frictional forces act on the ball at its point of contact with the turntable, but do no work). The turntable is rotating about the vertical z-axis at constant angular velocity $\Omega \hat{z}$.

Use a laboratory frame coordinate system $(\mathbf{r}, z), \mathbf{r} = (x, y)$ so the center of the ball is in the plane z = 0, and the axis of the turntable is $\mathbf{r} = 0$. Distinguish the (vector) angular velocity $\boldsymbol{\omega}_{rot}$ of the rotation of the ball about its center, and the angular velocity $\boldsymbol{\omega}_{cm} \hat{z}$ of the orbit about its center, where $\boldsymbol{\omega}_{cm}$ is scalar.

- a) Find a solution of the equations of motion where the center of the ball is stationary at a point $\mathbf{r}_0 \neq 0$ in the laboratory frame. What is $\boldsymbol{\omega}_{rot}(t)$ for this solution?
- b) Find the general solution for the orbit $\mathbf{r}(t)$ of the center of the ball, when the initial center-of-mass position and velocity are \mathbf{r}_0 and \mathbf{v}_0 . Show that, in the laboratory frame, the ball rolls along a circular path (in general centered at a point $\mathbf{r} \neq 0$), with an angular velocity ω_{cm} that is independent of the initial conditions.
- c) If the ball is solid with uniform density, what is the relation of ω_{cm} to Ω ?