J07M. 1 - Ball on a Turntable

Problem

A spherically symmetric ball of mass m, moment of inertia I about any axis through its center, and radius a, rolls without slipping and without dissipation on a horizontal turntable (so frictional forces act on the ball at its point of contact with the turntable, but do no work). The turntable is rotating about the vertical z-axis at constant angular velocity $\Omega \hat{\boldsymbol{z}}$.

Use a laboratory frame coordinate system $(\boldsymbol{r}, z), \boldsymbol{r}=(x, y)$ so the center of the ball is in the plane $z=0$, and the axis of the turntable is $\boldsymbol{r}=0$. Distinguish the (vector) angular velocity $\boldsymbol{\omega}_{\text {rot }}$ of the rotation of the ball about its center, and the angular velocity $\omega_{c m} \hat{\boldsymbol{z}}$ of the orbit about its center, where $\omega_{c m}$ is scalar.
a) Find a solution of the equations of motion where the center of the ball is stationary at a point $\boldsymbol{r}_{0} \neq 0$ in the laboratory frame. What is $\boldsymbol{\omega}_{r o t}(t)$ for this solution?
b) Find the general solution for the orbit $\boldsymbol{r}(t)$ of the center of the ball, when the initial center-of-mass position and velocity are \boldsymbol{r}_{0} and \boldsymbol{v}_{0}. Show that, in the laboratory frame, the ball rolls along a circular path (in general centered at a point $\boldsymbol{r} \neq 0$), with an angular velocity $\omega_{c m}$ that is independent of the initial conditions.
c) If the ball is solid with uniform density, what is the relation of $\omega_{c m}$ to Ω ?

