J07E.2 - Rotating Shell of Charge

Problem

A hollow spherical shell centered at the origin has radius a and a total electric charge Q > 0 uniformly distributed over its surface. The shell is slowly spun up to an angular velocity $\omega = \omega_0 \hat{z}$ (where $\omega_0 > 0$) over a period of time $\tau \gg a/c$, where c is the speed of light, so radiation effects can be ignored.

- a) To linear order in $d\omega/dt$, find expressions for the electromagnetic fields $\vec{E}(\vec{r})$ and $\vec{B}(\vec{r})$ throughout space, as functions of ω and $d\omega/dt$. Make a qualitatively correct sketch showing the pattern of electric field lines in the plane z = 0. Indicate the direction of rotation of the charged shell on your plot.
- b) After the angular velocity ω_0 is reached, hat is the total angular momentum \vec{L} stored in the electromagnetic fields?