M07E.2 - Noise in a Circular Ring

Problem

A circular ring of radius a is made from copper wire. The ring is held at a temperature T. The wire diameter is d and its electrical conductivity is σ .

- a) What is the voltage noise across the ends of the wire if the ring is open? State your result in terms of root mean square voltage V_n in a frequency bandwidth Δf . Use V_n in subsequent parts if you are uncertain about its value.
- b) Suppose the ends of the ring are shorted. What is the r.m.s. magnetic field noise in a bandwidth Δf at the center of the ring at very low frequencies?
- c) Consider the r.m.s. magnetic noise in a narrow bandwidth Δf around a central frequency f. The magnetic field noise is constant up to some critical frequency f_c and drops as f^{-p} for frequencies much higher than f_c . There are two effects which are responsible for this decrease of the magnetic noise in the radio-frequency range, where the electrical conductivity σ is nearly constant. What are these effects? Give a rough estimate of f_c , which is approximately the same for both effects, and find the power p.