## M07M. 2 - Particle in an Ellipsoid

## Problem

Consider a point mass $m$ constrained to move without friction on the surface of an ellipsoid. There is no gravity in this problem. The coordinates of the mass can be parametrized by the following equations:

$$
x=a \sin \theta \cos \phi \quad y=a \sin \theta \sin \phi \quad z=b \cos \theta .
$$

a) Write the Lagrangian using $(\theta, \phi, \dot{\theta}, \dot{\phi})$ coordinates and derive the equations of motion.
b) Show that one period of the motion is given by

$$
T(E, A)=2 \int_{\theta_{-}}^{\theta_{+}} \frac{d \theta}{\sqrt{-V_{E, A}(\theta)}}
$$

where

$$
V_{E, A}(\theta)=\frac{m a^{2} A^{2}-2 E \sin ^{2} \theta}{m \sin ^{2} \theta\left(a^{2} \cos ^{2} \theta+b^{2} \cos ^{2} \theta\right)}
$$

and $\theta_{ \pm}$are the two roots of the equation $V_{E, A}(\theta)=0$. Here $E$ is the energy and $A$ is the conserved quantity $A=\dot{\phi} \sin ^{2} \theta$.

