M07Q. 2 - Scattering

Problem

Consider elastic scattering from a 3 -dimensional spherically symmetric square potential well of radius R :

$$
V(\boldsymbol{r})= \begin{cases}-V_{0}, & |\boldsymbol{r}|<R \\ 0, & |\boldsymbol{r}| \geq R\end{cases}
$$

A beam of particles with mass m is impinging on the potential well with incident momentum p_{0} parallel to the \hat{z} axis.
a) Calculate the differential scattering cross-section as a function of the scattering angle θ in the Born approximation for $p_{0} \ll \hbar / R$.
b) Sketch the differential cross-section as a function of the scattering angle θ and describe any prominent features.
c) Suppose now we have an infinite two-dimensional array of square wells in the $x-y$ plane separated by distance $a \gg 2 R$:

$$
V_{a}(\boldsymbol{r})=\sum_{j, k=1}^{\infty} V(\boldsymbol{r}-j a \hat{x}-k a \hat{y})
$$

Describe qualitatively the scattering pattern in this case and sketch the behavior of the cross-section, labeling the position of prominent features.

