J08E.1 - Radiation from an Antenna

Problem

An antenna consists of a circular wire loop of radius R, centered in the x-y plane of a Cartesian coordinate system. The current has the same amplitude, I = I(t), at all locations in the wire at a given time t. There is no net electrical charge on the wire. Assuming that \dot{I} , the rate of change of the current, is slow enough that magnetic dipole radiation dominates any higher multipoles, calculate:

- a) the vector potential $\vec{A} = \vec{A}(\vec{r}, t)$ and scalar potential Φ at the location \vec{r} and time t when $r \gg cI/\dot{I}$ (specify your choice of gauge);
- b) the magnetic and electric fields, \vec{B} and \vec{E} , at \vec{r} and t;
- c) the energy flux, $S = S(\theta, \phi)$, as a function of the polar angles θ and ϕ ;
- d) the total radiated power $P = \int S \sin \theta \, d\theta \, d\phi$.

Retain enough terms of any expansion in powers of 1/r to account for radiation. Insofar as possible, express your answers in terms of the magnetic dipole moment, $m = \pi R^2 I/c$, and its time derivatives.