J08Q.1 - Deuteron

Problem

A deuteron is a bound state of a neutron (charge 0, mass 939.5 MeV) and a proton (charge e, mass 938.2 MeV), Scattering measurements determine that the separation of the neutron and proton is about a = 1.5 fm and mass measurements determine that the binding energy is $E_b = 2.226$ MeV. Approximate the potential energy as a spherical square well, $V(r) = -V_0$ fro r < a and V(r) = 0 for r > a. (Recall that $\hbar = 6.5817 \times 10^{-16}$ eVs.)

- a) What is the value of V_0 in MeV?
- b) Can the deuteron have an excited (but still bound!) state with angular momentum $\ell = 0$?
- c) Are there bound states with $\ell > 0$? Explain!