J08E. 2 - Rotating Disk in a Magnet

Problem

(Top view)
An aluminum disk of radius R, thickness d, conductivity σ, and mass density ρ is mounted on a frictionless vertical axis. It passes between the poles of a magnet near its rim which produces a \vec{B}-field perpendicular to the plane of the disk over a small area A of the disk. The initial speed of the disk is $\omega(t=0)=\omega_{0}$.
a) An observer on the disk, moving between the pole pieces of the magnet would feel an electric field. Give the direction and magnitude of this field in terms of R, ω_{0}, and \vec{B} (assume the angular speed ω is small enough so that $\gamma \sim 1$). This results in a current density.
b) Calculate the torque due to the Lorentz force produced on this current density by the vecB-field of the magnet.
c) Given the moment of inertia of the disk around its axis $\left(I=\frac{1}{2} M R^{2}\right)$, write out the equation of motion of the disk and calculate the number of revolutions of the disk before it comes to rest.

