M08M.1 - Bead on a Hoop

Problem

A bead of mass m slides without friction on a circular loop of radius a and mass M. The loop lies in a vertical plane and rotates about a vertical diameter with angular velocity ω .

- a) Initially, prepare the system in a state such that $\omega = \text{constant}$ and the bead is at some stable equilibrium point $\theta_0(\omega)$. Find $\theta_0(\omega)$.
- b) Now assume $\omega^2 > g/a$, and move the bead from θ_0 by a small amount $\Delta \theta$. Suppose the bead then undergoes small oscillations around θ_0 . Find the condition under which we can treat the angular velocity approximately as constant.
- c) Find the frequency of small oscillations.