M08M. 1 - Bead on a Hoop

Problem

A bead of mass m slides without friction on a circular loop of radius a and mass M. The loop lies in a vertical plane and rotates about a vertical diameter with angular velocity ω.

a) Initially, prepare the system in a state such that $\omega=$ constant and the bead is at some stable equilibrium point $\theta_{0}(\omega)$. Find $\theta_{0}(\omega)$.
b) Now assume $\omega^{2}>g / a$, and move the bead from θ_{0} by a small amount $\Delta \theta$. Suppose the bead then undergoes small oscillations around θ_{0}. Find the condition under which we can treat the angular velocity approximately as constant.
c) Find the frequency of small oscillations.

