M08Q.2 - Ladder Operators

Problem

The dynamics of a system is characterized by the Hamiltonian

$$H = a^{\dagger}a + \frac{1}{2}, \ [a, a^{\dagger}] = 1.$$

a) Show that the ground state of this system, $|0\rangle$, satisfies

 $a|0\rangle = 0$.

b) Consider the state

$$|\alpha\rangle = \mathcal{N}e^{\alpha a^{\dagger} - \alpha^* a}|0\rangle,$$

where \mathcal{N} is some normalization constant. Show that $a|\alpha\rangle = \alpha |\alpha\rangle$. Find \mathcal{N} .

c) Consider the change of variables

$$a = \frac{1}{\sqrt{2}}(q + ip), \quad a^{\dagger} = \frac{1}{\sqrt{2}}(q - ip).$$

Derive and interpret the hamiltonian in this set of new variables.

d) Calculate $\langle \alpha | q | \alpha \rangle$. Describe the time dependence of $\langle \alpha | q | \alpha \rangle$.