M08E. 3 - Electromagnet with an Iron Core

Problem

A long solenoid is made from $N=1000$ turns of wire, wound at 10 turns per cm . Recall that $\mu_{0}=4 \pi \cdot 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A}$.
a) Give the approximate value in Tesla of the magnitude of the B-field at the center of the solenoid for $I=100 \mathrm{~A}$ of current.
b) Insert a soft-iron core through the solenoid and bend the two ends together leaving a uniform gap distance of 30 cm . The total length L of the core is 3 meters and it has a constant cross-sectional area $A_{\text {core }}=400 \mathrm{~cm}^{2}$. The relative permeability of the soft-iron is $\mu_{r}=400$. Compute the magnitude of the B-field in the core $B_{\text {core }}$, and in the gap, $B_{\text {gap }}$, for a current $I=100 \mathrm{~A}$. Assume that the B-field is uniform in the gap and there is no hysteresis.

c) Assume the maximum value of $B_{\text {core }}=1.5 \mathrm{~T}$. New pole-faces are added to the gap that shorten the cap to 10 cm , but increase the cross-sectional area at the gap to $A_{\text {pole }}=1600 \mathrm{~cm}^{2}$. The cross-sectional area of the core is unchanged. Compute the maximum value of $B_{\text {gap }}$ given the constraint on $B_{\text {core }}$ and the new pole-face geometry. Assume that the B-field is uniform in the gap and there is no hysteresis.

