J09E.1 - Motion in EM Fields

Problem

In a large region of space there is a uniform magnetic field B in the z-direction and a uniform electric field E in the x-direction. A particle of mass m and charge q is initially at rest at the origin. The equation of motion is

$$m\frac{dU^{\alpha}}{d\tau} = qF^{\alpha}_{\ \beta}U^{\beta}$$

where τ is the proper time of the particle and $U^{\alpha} = dx^{\alpha}/d\tau$ is its four-velocity. The field strength tensor is $F_{\alpha\beta} = \partial_{\alpha}A_{\beta} - \partial_{\beta}A_{\alpha}$, where A^{α} is the 4-vector potential (its time component A^{0} is the electric potential ϕ). Note that in this problem we use units where the speed of light c = 1.

- a) Solve for U^{μ} as a function of the proper time of the particle assuming that $B^2 > E^2$. What is the average 4-velocity of the particle?
- b) Solve for the particle position x^{μ} as a function of the proper time.