J09E. 1 - Motion in EM Fields

Problem

In a large region of space there is a uniform magnetic field B in the z-direction and a uniform electric field E in the x-direction. A particle of mass m and charge q is initially at rest at the origin.
The equation of motion is

$$
m \frac{d U^{\alpha}}{d \tau}=q F_{\beta}^{\alpha} U^{\beta}
$$

where τ is the proper time of the particle and $U^{\alpha}=d x^{\alpha} / d \tau$ is its four-velocity. The field strength tensor is $F_{\alpha \beta}=\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}$, where A^{α} is the 4 -vector potential (its time component A^{0} is the electric potential ϕ). Note that in this problem we use units where the speed of light $c=1$.
a) Solve for U^{μ} as a function of the proper time of the particle assuming that $B^{2}>E^{2}$. What is the average 4 -velocity of the particle?
b) Solve for the particle position x^{μ} as a function of the proper time.

