J09M. 1 - Coupled Pendula

Problem

Two simple pendula, each of length l and mass m, are coupled by a spring of force constant k. The spring is attached to the rods of the pendula, which are massless and inextensible, at their half-way points, as shown. Throughout, assume the angles θ_{1} and θ_{2} are small and that motion is confined to the 2 D plane.

a) What are the normal frequencies of the system, and the corresponding normal mode vectors?
b) Consider now the case of "weak coupling"-i.e., the case when k is small. With respect to what is k small?

At $t=0$ the lefthand pendulum is displaced by an angle $\theta_{1}(0)=\theta_{0}$ and released from rest; the righthand pendulum is at rest with $\theta_{2}(0)=0$. Find expressions for $\theta_{1}(t)$ and $\theta_{2}(t)$ for $t>0$. How long will it take before the lefthand mass stop swinging and the righthand mass achieves maximum amplitude?

