J09M. 2 - Minimizing Drag

Problem

The goal of this problem is to determine the optimum shape of a body in order to minimize the drag from a constant flow of air. Suppose that the body has cylindrical symmetry (that is, it is invariant under rotations around the z axis), and has a height L. If its radius is given by $r(z)$, a good approximation to the drag is the expression

$$
D=a \int_{0}^{L} r(z)\left(\frac{d r}{d z}\right)^{3} d z
$$

where $a>0$ is some constant.
a) If $r(0)=0$ and $r(L)=d$, what is the optimal shape of the body in order to minimize D ?
b) Suppose, in addition, that the body has a fixed volume V. How would you find the optimal shape under this constraint? Find a first order differential equation that the optimizing $r(z)$ will satisfy.

