J09T. 3 - Errors in Gene Expression

Problem

A biased coin has a probability p of coming up heads in a single toss.
a) Write down the probability P_{n} of obtaining n heads in N tosses.
b) Show that, in the limit $p \ll 1$ and $n \ll N, P_{n}$ reduces to the Poisson formula

$$
P_{n}=\frac{\lambda^{n}}{n!} e^{-\lambda}, \quad(\lambda \equiv N p)
$$

[Hint: Consider $\ln P_{n}$. Stirling's approximation is $n!\simeq n^{n} e^{-n}$. Note that $\lambda \gg p$.]
c) Assume P_{n} has the Poisson form, and write $\sum_{n=0}^{\infty} n^{s} P_{n}=\left\langle n^{s}\right\rangle$. Calculate the mean $\bar{n}=\langle n\rangle$, and the variance $\left\langle(n-\bar{n})^{2}\right\rangle$.
d) A single strand of DNA is comprised of a string of basic units (the nucleotides A, T, G, and C) arrayed in a specific order. During gene expression, a molecular machine crawls along the strand and reads the units sequentially (this starts a chemical sequence that assembles one protein molecule).

The machine is highly reliable but not infallible. On average, it makes only one error for every 10^{6} units read. Assume that a gene is comprised of $N_{\text {gene }}=3 \times 10^{4}$ units. Calculate the probability that the machine makes zero errors when the gene is read. Find the probability that it makes 2 errors.

