M09Q. 2 - Dynamics of Spin-1/2 Particles (J94Q.2)

Problem

The spin dynamics of a spin- $1 / 2$ particle is governed by the Hamiltonian

$$
H=\lambda \hbar \sigma_{x} .
$$

At the initial time $t=0$ the spin is pointing up along the z axis. We are going to be concerned with measurements of the z-component of the spin at later times. Recall that in the standard representation

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

We want to compare two situations:
a) The z-component is measured at time τ. What is the probability - call it P_{I} - that the spin will be pointing down?
b) The z-component of spin is measured at an intermediate time $\tau / 2$. This measurement is carried out by a compatriot who assures you that it was done but who doesn't tell you his finding. You carry out your own measurement at time τ, i.e., at a time $\tau / 2$ after the intermediate measurement. What is the probability - call it $P_{I I}$ - that the spin is pointing down?

