M09T. 2 - Particles on a Line (J94T.2)

Problem

Consider a system of N classical particles on a line with Hamiltonian

$$
H=\frac{p_{1}^{2}}{2 m}+U\left(x_{1}\right)+\sum_{i=2}^{N} \frac{p_{i}^{2}}{2 m}+U\left(x_{i}-x_{i-1}\right) .
$$

The potential between neighboring particles has the form:

$$
U(y)= \begin{cases}+\infty, & \text { if } y<0 \\ -U_{0}, & \text { if } 0 \leq y \leq a \\ 0, & \text { if } a<y\end{cases}
$$

$\left(U_{0}>0, a>0\right)$

In addition, a constant force f is applied to the rightmost particle $i=N$.
a) Compute the mean length, $\left\langle x_{n}\right\rangle$, of the system as a function of N, T and f.
b) Obtain the high and low temperature limits of the result from part a).

