J10Q. 2 - Angular Momentum

Problem

A two-particle system is in a state $\left|\Psi_{0}\right\rangle$, where each particle has orbital angular momentum quantum numbers $\ell=1$ and $m_{\ell}=0$.
Let $\vec{L}_{\text {tot }}=\vec{L}_{1}+\vec{L}_{2}$ be the total angular momentum of the two particles, where $L_{\text {tot }}^{2}$ has eigenvalues $\hbar^{2} L(L+1)$.
a) If the two-particle state is expanded in eigenstates of $L_{\text {tot }}^{2}$, which values of L have non-zero amplitude in the expansion? For each of these values, what is the probability that it will be found in a measurement of $\left|\vec{L}_{\text {tot }}\right|^{2}$?

At time $t=0$, a coupling between the particles is "switched on", so that for $t>0$ the time evolution of the state is governed by the Hamiltonian

$$
H=\gamma \vec{L}_{1} \cdot \vec{L}_{2} .
$$

The amplitude $f(t)=\left|\left\langle\Psi(t) \mid \Psi_{0}\right\rangle\right|^{2}$ oscillates as a function of time, returning to the value 1 at times $t=t_{n}=n T$. What is the period T ?
b) What is the value of $f(t)$ when $t=\left(t_{n}+t_{n+1}\right) / 2$?

