J10Q. 3 - Spin-Dependent Scattering

Problem

Consider the usual Hamiltonian for non-relativistic electrons moving in 2D:

$$
H=H_{0}+V(x, y), \quad \text { where } \quad H_{0}=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}
$$

Electrons experience a "step" potential $V(x, y)=0$ for $x<0, V=V_{0}>0$ fro $x>0$.
a) Electrons arriving from the region $x<0$ are incident normally in the step (i.e., have conserved momentum $p_{y}=0$). Find the probability of reflection.

Now consider a similar problem, but this time one where the Hamiltonian couples the spatial and spin degrees of freedom of the electron in an essential way:

$$
\boldsymbol{H}=\boldsymbol{H}_{0}+V(x, y) \boldsymbol{\sigma}^{0}, \quad \text { where } \quad \boldsymbol{H}_{0}=v_{F}\left(\boldsymbol{\sigma}^{x} p_{y}-\boldsymbol{\sigma}^{y} p_{x}\right),
$$

where $\boldsymbol{\sigma}^{i}$ are 2×2 Pauli matrices and $\boldsymbol{\sigma}^{0}$ is the identity matrix; v_{F} is a characteristic speed, and $V(x, y)$ is the same "step" potential as in a), above.
In this problem, eigenstates of \boldsymbol{H}_{0} with momentum \boldsymbol{p} have energie $\varepsilon_{ \pm}(\boldsymbol{p})= \pm v_{F}|p|$. They are non-degenerate for $\boldsymbol{p} \neq 0$.
b) Find the two-component wavefunction $\Psi_{\sigma}(x, y)$ of positive energy eigenstates of \boldsymbol{H}_{0} with momentum $\boldsymbol{p} \equiv\left(p_{x}, p_{y}\right)=|p|(\cos \theta, \sin \theta)$. (The index σ labels the two possible values of the z-component of spin.)
c) Electrons arriving from the region $x<0$ with $p_{y}=0$ (as in part a)) now have 100% probability of transmission through the step. Explain why.
d) Consider electrons arriving with energy $E=2 V_{0}$ and $p_{y}=|p| \sin \theta$:
i. For what range of θ is transmission through the step possible? (Hint: an analog of "Snell's law" relates angles of incidence and refraction, θ and θ^{\prime}.)
ii. In this range, find the reflection probability $R(\theta)$.

Note 1: The second Hamiltonian only requires that both wavefunction components $\Psi_{\sigma}(x, y), \sigma=\uparrow, \downarrow$, are continuous at the step, with no condition on their derivatives. (It describes electrons on the surface of a "topological insulator".)

Note 2: The Pauli matrices are:

$$
\boldsymbol{\sigma}^{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \boldsymbol{\sigma}^{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \boldsymbol{\sigma}^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \boldsymbol{\sigma}^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

