## 2. Square loop antenna

A square conducting loop with sides of length 2a is in the x-y plane, concentric with the origin, with its sides parallel to the coordinate axes. The current in the loop is  $I_0 \cos(\omega t)$ , where  $a \ll \omega/c$ . The loop is surrounded by vacuum.



- (a) What is the electric field in the radiation zone (i.e., in the limit of distances  $r \gg \omega/c$  from the origin)? Characterize the type of radiation this represents.
- (b) How does the total power P radiated by the loop depend on  $\omega$ ? What is its precise value?

An infinite, perfectly-conducting plane is now placed at z=-b, where  $b\ll c/\omega$ .

(c) What type of radiation field is now seen for  $r \gg \omega/c$ , and how does its radiated power depend on frequency in this case?

(Note that you are only asked about the frequency-dependence of the power, not for an elaborate calculation which would be needed to find the precise value of the radiated power in (c)).